
Department of Psychology 
Royal Holloway, University of London  
Egham                                                   
Surrey                                                           
TW20 0EX 

 

 

 

 

 

Psychp01 Manual 
 

Gabriele Bellucci 

 

 

 

 

 

 

 

 
v. 1 

2024  



 2 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

Choose what you want to do  

by clicking the corresponding text in the speech balloons above 

  

Why are you 

here? 

To know 

everything! 

To get it 

done! 



 3 

Table of Contents 

 

 

Getting Started with HPC on psychp01 ............................................... 6 

First Steps on psychp01 ....................................................................... 7 

Linux QuickStart .................................................................................. 9 

New on Linux systems? .................................................................................. 9 

Common Commands ...................................................................................... 9 

Text editing in command line ...................................................................... 11 

Cluster access ..................................................................................... 13 

VPN connection ........................................................................................... 13 

Log in with SSH ........................................................................................... 13 

GUI access................................................................................................... 15 

Running analyses on psychp01 .......................................................... 17 

Transferring files to/from psychp01 .................................................. 18 

Transferring data......................................................................................... 18 

Transferring code ........................................................................................ 18 

File Transfer Clients.................................................................................... 18 

Bash files and Batch system .............................................................. 23 

Dos and don'ts ............................................................................................. 23 

Batch System ................................................................................................ 23 

Creating a job script .................................................................................... 23 

How to pass command-line parameters to the job script ............................ 24 

Software on psychp01 ........................................................................ 25 

Advanced SLURM............................................................................. 26 

Running jobs ...................................................................................... 31 

Job Blueprint ............................................................................................... 32 

R example .................................................................................................... 35 

Python example ........................................................................................... 36 

MATLAB example ........................................................................................ 37 

Interactive Jobs .................................................................................. 40 

Starting an interactive job ........................................................................... 40 

Keeping interactive jobs alive ..................................................................... 40 



 4 

Installing VPN Client – GlobalProtect .............................................. 42 

Frequently Asked Questions .............................................................. 46 

  



 5 

Prerequisites 

 
Psychp01 is a High Performance Computing (HPC) cluster as a vitualized system that runs 

Debian 11 (https://www.debian.org/), a Linux operating system. You will need to become 

familiar with the Linux command line interface to use them effectively. While it can be time 

consuming to learn a bit of Linux it can be considered an investment in scientific skills. 

 

 

This YouTube.com video starts from the very basics of the Linux command line. And Fig.1 

shows a nice cheat sheet for Linux. 

 

 
Figure 1. A nice cheat sheet for Linux 

 

Also, please find here some useful tutorials on HPC clusters. Moreover, the department of 

Psychology has a github page with tutorials and resources to help you get started, guide you 

through some practicalities, and provide you with useful code snippets. 

 

Moreover, for any technical assistance, please send a ticket to the IT help desk at 

itservicedesk@rhul.ac.uk, or email Gabriele Bellucci at gabriele.bellucci@rhul.ac.uk.  

https://www.debian.org/
https://www.youtube.com/watch?v=2PGnYjbYuUo
https://ulhpc-tutorials.readthedocs.io/en/latest/
https://github.com/RHULPsychology


 6 

Getting Started with HPC on psychp01 

 
Objective: Here you will get to know psychp01 and will learn how to connect to 

psychp01. 

 

 

What's psychp01? 
Psychp01 is a virtual computer cluster in a cloud environment at Royal Holloway. Psychp01 

provides local HPC resource with an end user experience similar to most HPC Linux clusters. 

 

Current available resources are 128 cores and 256 GB memory. The server mounts NFS 

filesystems from a NetApp File Server (see Fig. 2). 

 

Psychp01 utilizes Linux (Debian), a batch scheduler (SLURM), and various software packages 

deployed using a module system. 

 

There will be an option for Singularity modules which enable applications and user to bring 

their own software environment and preserve that environment in the name of reproducible 

research. 

 

 
Figure 2. Psychology cluster specifications. 

  

https://www.debian.org/
https://slurm.schedmd.com/


 7 

First Steps on psychp01 
 

 

Overview 
 

It is strongly advised that new HPC users explore the many tutorials and documentation 

resources available on the web, for example: HPC Cluster Tutorials or our RHULPsychology 

github page Please see Prerequisites. 

 

Before starting, you need to have a short introduction to the usage of the cluster and current 

guidelines in place at the department. For that, please contact Gabriele Bellucci at 

gabriele.bellucci@rhul.ac.uk. 

 

On psychp01, there are four main locations you'd need to get familiar with: 

• /home 

• /MRIWork 

• /MRIArchive 

• /MRIRaw 

 

We will explain to you step by step how to move to these locations and what they are there for. 

Importantly, data in the /MRI* locations will be backed up to avoid data loss. 

 

See also this CUBIC wiki page for further details on data structure, storage, backup and data 

sharing. 

 

 

Account and Password 
 

Access to psychp01 can be made available to all staff members with a @rhul.ac.uk email 

address. To request for an account for HPC access, please send an email to  

itservicedesk@rhul.ac.uk. It is expected to take 2-3 days for creating your account and 

corresponding access to the system. Someone from the Psychology IT team will get in touch 

with you shortly. 

 

When you get confirmation, you will be able to connect to the cluster. 

 

 

Access to psychp01 
 

Access to psychp01 can be performed through the command line (for computing purposes) as 

well as the Graphical User Interface (GUI; for visualization purposes only). Here, the ways of 

access to the cluster are described. 

 

 

Psychp01 Environment 

 

https://ulhpc-tutorials.readthedocs.io/en/latest/
https://github.com/RHULPsychology
https://github.com/RHULPsychology
mailto:gabriele.bellucci@rhul.ac.uk
http://54.236.43.240/doku.php?id=data-storage


 8 

Once you have logged into psychp01, you are in a basic Linux Debian command line 

environment. You will need to be familiar with the basics of the Linux command line interface 

to use psychp01. Luckily, there are many good tutorials on the web to help with this. 

 

On psychp01 you can setup compute jobs and submit them for processing. You can have an 

interactive environment enabling you to edit files, write scripts, load software modules and 

compile programs. You can download resources from the internet such as git repositories or 

singularity containers. 

 

Psychp01 is a batch computing system which means you must submit your computational work 

to a job scheduler, in our case SLURM. To submit a job to the scheduler you will need to create 

a job script. Creating job script is so key to batch HPC cluster computing that if you are not 

familiar with batch jobs and SLURM, please see the Running Jobs section of this document. 

 

 

Files and Data Access 

 

When you ssh login to psychp01, you’ll be in your cluster home directory 

 
/home/username 

 

There will be a quota on this directory of 1.5TB. This is different from your campus home 

directory or network file share. This is a place where you can setup your programs and scripting 

for jobs that will be submitted to run on the compute resources. 

 

Given the small space of your home directory, no data should be uploaded to it. Instead, you 

should place all your data into /MRIWork, which is your workspace. A specific workplace folder 

will be created and provided by the psychology IT team, which is regularly backed up. It is 

encouraged that the users keep the workspace clean and all cached and unnecessary files to be 

deleted from the workspace at regular intervals. 

 

 

Data Staging 
 

To move files from your computer to psychp01 or vice versa, you may use any tool that works 

with ssh. 

 

On Linux and OSX, these are scp, sftp, rsync, or similar programs. Please see Transferring 

files to/from psychp01. 

 

On Windows, you may use VNC. 

 

  

https://slurm.schedmd.com/overview.html
https://www.realvnc.com/en/


 9 

Linux QuickStart 
 

New on Linux systems? 
 

This page contains some tips on how to get started using the psychp01 cluster if you are not 

too familiar with Linux/Unix. The information is intended for both users that are new to 

psychp01 and for users that are new to Linux/UNIX-like operating systems. Please consult the 

rest of the user guide for information that is not covered in this chapter. 

 

Please also visit this MIT course on basics shell commands and command line environment. 

 

 

SSH 
 

On a terminal, you can use ssh to login to psychp01. Check the Access to psychp01 through 

Command Line in this documentation to learn more about ssh. 

 

 

File Transfer Clients 

 

To transfer any file or data you wish to use to the cluster, you can use file transfer clients, such 

as scp or sftp. For more info, see Transferring files to/from psychp01. 

 

 

Running jobs on the cluster 

You must execute your jobs by submitting them to the batch system using bash files. There is 

a dedicated section on bash files and batch system in our user guide that explain how to use the 

batch system. The pages explain how to write job scripts, and how to submit, manage, and 

monitor jobs. It is not allowed to run long or large memory jobs interactively (i.e., directly from 

the command line). 

 

 

Common Commands 
 

Provide the full path name of the directory you are currently in: 
pwd 

 

Change the current working directory: 
cd 

 

List the files and directories which are located in the directory you are currently in: 
ls 

 

Searches through one or more directory trees of a file system, locates files based on some user-

specified criteria and applies a user-specified action on each matched file: 
find 

 

Find specific files, you can use the -name and -type arguments: 
find . -name 'my*' -type f 

https://missing.csail.mit.edu/


 10 

 

The above command searches in the current directory (.) and below it, for files and directories 

with names starting with my. “-type f” limits the results of the above search to only regular 

files, therefore excluding directories, special files, pipes, symbolic links, etc. my* is enclosed 

in single quotes (apostrophes) as otherwise the shell would replace it with the list of files in the 

current directory starting with “my”. 

 

Find a certain expression in one or more files: 
grep 

 

For example, to find the string apple in the fruitlist.txt text file, type: 
grep apple fruitlist.txt 

 

Create new directory: 
mkdir 

 

Remove a file. Use with caution: 
rm 

 

Remove a directory. Use with caution: 
rmdir 

 

Move or rename a file or directory: 
mv 

 

Edit text files in command line (for more details, see here): 
vi 

 

or 
vim 

 

View (but do not change) the contents of a text file one screen at a time, or, when combined 

with other commands (see here) view the result of the command one screen at a time. Useful 

if a command prints several screens of information on your screen so quickly, that you don’t 

manage to read the first lines before they are gone. 
less 

 

and 
more 

 

Use the “pipe” or “vertical bar” to group two or more commands together: 
| 

 

For example, list files in the current directory (ls), retain only the lines of ls output containing 

the string ``key” (grep), and view the result in a scrolling page (less), type: 
ls -l | grep key | less     

 

A complete listing of the defined variables and their meanings can be obtained by typing: 
printenv 

 

You can define (and redefine) your own variables by typing: 
export VARIABLE=VALUE 

 



 11 

If you know the UNIX-command that you would like to use but not the exact syntax, consult 

the manual pages on the system to get a brief overview. Use man command for this. For 

example, to get the right options to display the contents of a directory, use: 
man ls 

 

To choose the desired options for showing the current status of processes, use 
man ps 

 

 

Text editing in command line 

 

A popular tool for editing files (e.g., your code) on Linux/UNIX-based systems is vi. 

Unfortunately, the commands within both vi editor are quite cryptic for beginners. It is 

probably wise to spend some time understanding the basic editing commands before starting 

to program the machine. 

 

For quick help, use: 
man vi 

 

or 
man vim 

 

Suppose you want to check the progress of your analyses. Suppose that you defined in your 

bash file that SLURM is supposed to output the status of your analyses in a text file (see here) 

named job_out.txt stored in your analyses folder in your home directory 

/home/gbellucci. To quickly check the status of your analyses, you would first establish an 

ssh connection with the cluster, then cd to your analyses folder and type vim job_out.txt, 

like that: 

 
ssh gbellucci@psychp01.rhul.ac.uk 

gbellucci@psychp01.rhul.ac.uk's password: 

gbellucci@psychp01:~$ cd /home/gbellucci/analyses 

gbellucci@psychp01:~$ vim job_out.txt 

 

This would open the file in your command window. You can scroll and check the status of your 

analyses. To exit just type: 
 

:q 

 

Every file opened with vim will be in a non-writable state. To write in your opened file, press 

 
i 

 

On the bottom left of your command line, you will see the word INSERT appear, like that: 
 

--INSERT-- 

 

Modify your file as you wish. When done, press ESC on your keyboard. This will make the 

word INSERT disappear. You are again back to a non-writable state. To save and exit, type: 

 
:wq 

 



 12 

Where w stands for “write” and q for “quit”. If you change your mind and decide to exit without 

saving your changes, just type 

 
:q! 

 

This will not write your changes and force an exit (that why the !) from vim. 

 

Please see below a short video demonstrating that. 

  




 13 

Cluster access 
 

 

After you have registered up for HPC access, you will be provided with a local USERID and 

PASSWORD, different from your college login credentials, which you can use to log into 

psychp01 using ssh (secure shell). 

 

To access the cluster, you need to be in the campus network. 

 

If you are connecting form a Windows computer on campus, you are already in the campus 

network. 

 

If you are on campus and connecting from a Linux or Apple computer or if you are off campus, 

you will need VPN access to the campus network and then connect to psychp01. 

 

If you don't have VPN access, please submit a ticket to the IT help desk. 

 

 

VPN connection 

 

Windows PC: 

 On campus: 

1. Establish an ssh connection 

 

Off campus: 

1. Connect to VPN 

2. Establish an ssh connection 

 

Mac or Linux 

Both on and off campus: 

1. Connect to VPN 

2. Establish an ssh connection 

 

For Windows, you will need to have installed an SSH client. 

 

Finally, there is also a GUI option, which, however, is not for computing purposes. 

 

See here for a step-by-step guide to install the VPN client GlobalProtect. 

 

 

Log in with SSH 

 

Access to psychp01 through Command Line (Linux and OSX) 
 

An ssh client (Secure SHell) allows you to connect to psychp01 from your terminal. An ssh 

client provides secure encrypted communications between two hosts over an insecure network. 

 



 14 

If you already have ssh installed on your UNIX-like system (Linux or Apple OSX), have a 

user account and password, login may be as easy as opening a terminal and typing ssh 

cluster_name, for instance: 

 
ssh psychp01.rhul.ac.uk 

 

into a terminal window. 

 

If your username on the cluster differs from your username on the local machine, use the -l 

option to specify the username on the machine to which you connect. For example: 

 
ssh cluster_name -l your_cluster_username 

 

or alternatively, 

 
ssh your_cluster_username@psychp01.rhul.ac.uk 

 

Hence, if my cluster username is “gbellucci”, I would type the following to access the cluster: 

 
ssh gbellucci@psychp01.rhul.ac.uk 

 

If you need X-forwarding, you must log in like this: 

 
ssh -X cluster_name 

 

For Interactive sessions, for example MATLAB, you should add -Y to your ssh command: 

 
ssh -Y username@psychp01.rhul.ac.uk 

 

where the command -Y enables trusted X11 forwarding. 

 

Once you have hit entered, you will be asked to provide your password. Once you entered your 

password, you will be connected to the cluster. You will see some basics information about the 

cluster printed out in the terminal like: 

 

 
Linux psychp01 5.10.0-24-amd64 #1 SMP Debian 5.10.179-5 (2023-08-08) x86_64 

 

The programs included with the Debian GNU/Linux system are free software; 

the exact distribution terms for each program are described in the 

individual files in /usr/share/doc/ */copyright. 

 

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent 

permitted by applicable law. 

Last login: Fri Oct 6 19:08:37 2023 from 10.40.65.14 

 

 

At the beginning of your terminal line, you will see your username and the server name like 

that: 

 
username@psychp01:~\$  

 

When you are done, you can close the connection just by typing exit in the command line. 

Please see below a short video that demonstrates that. 



 15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SSH clients for Windows 
 

On Windows, you can use PuTTYgen that comes with PuTTY. More information on ssh.com. 

Further, the cmder console emulator works nicely with Windows 10/11 and is available open 

source here. Please download the full version to get built-in installation of git-for-windows 

along with it. If you have any queries, please get in touch with the IT. 

 

At the OpenSSH page, you will find several SSH alternatives for both Windows and Mac. 

 

Please note that Mac OS X comes with its own implementation of OpenSSH, so you don’t need 

to install any third-party software to take advantage of the extra security SSH offers. Just open 

a terminal window and jump in. 

 

To learn more about using SSH, please also consult the OpenSSH page and take a look at the 

manual page on your system by typing the following on your terminal: 

 
man ssh 

 

 

GUI access 
 

Alternatively, for allowing GUI access, the cluster comes installed with Remote Desktop 

Protocol (RDP). From a Windows and Apple computer, use the Microsoft Remote Desktop 

App. From Linux computers use Remmina. You should use the server location as 

psychp01.rhul.ac.uk and use the local userid and password provided by Psychology IT for 

logging in through RDP. The advantage of RDP is that your desktop will be preserved between 

logins, across network disconnects, etc, until the cluster is reset. 

 

IMPORTANT: Be aware that the GUI access is a useful option you can use in case you would 

need to visually inspect something on cluster without the need to download it onto your local 

machine (e.g., plots of your results or preprocessing steps and so on). However, you should not 

https://www.ssh.com/academy/ssh/putty/windows/puttygen
https://cmder.app/
https://www.openssh.com/
https://apps.apple.com/us/app/microsoft-remote-desktop/id1295203466?mt=12
https://apps.apple.com/us/app/microsoft-remote-desktop/id1295203466?mt=12
https://remmina.org/



 16 

run anything from the GUI. All analyses need to be run using the batch system. Processes that 

do not use the batch system will be killed. 
 

  



 17 

Running analyses on psychp01 
 

 

To run analyses, you: 

1. need access to the cluster. 

a. No access? Go to How can I access the cluster? 

 

 

2. need your data and code on the cluster. 

a. To see how you can transfer them go to How can I transfer files to the 

cluster? 

 

 

3. need your job file on the cluster. 

a. See How can I set up a job file? 

 

 

4. can then run sbatch your_file_name.sh in the command line. 

a. For more details, see How can I run a job file? 

 

 

Please see below a short video demonstrating that. 

 

  




 18 

Transferring files to/from psychp01 
 

 

Transferring data 
 

You need to upload your data into the folder that was created by the IT for you within the 

/MRIWork folder on the cluster. Your folder name will be something like MRIWork# where # 

stands for a number assigned to you. Hence, if your number is “25”, your path name to upload 

your data on the cluster will be: 

 
/MRIWork/MRIWork25 

 

The most secure way to transfer data is using File Transfer Clients like sftp and scp via the 

command line. 

 

To know more about /MRIWork, folder structure, data archiving, data backup and data sharing, 

have a look at the CUBIC wiki. 

 

Please NOTE: theoretically, you can upload your data also into your home directory (see 

Transferring code below) and save your analysis results there. However, the home directory 

has limited amount of storage space and is not periodically backed up. Hence, it is advisable 

that you save your data and analysis results in your /MRIWork/MRIWork# folder, even if you 

do not have MRI data and do not think your data occupy too much space. This will avoid 

problems with storage space and minimize risks of data loss. 

 

 

Transferring code 
 

You can upload your scripts into a folder within your home directory on the cluster. The IT 

will have probably created a folder in the home directory with the first letter of your name 

preceding your surname (e.g., gbellucci). Hence, if your name is Gabriele Bellucci, your path 

name to upload your data on the cluster will be: 

 
/home/gbellucci 

 

Your folder name in the home directory has the same name as the username you use to access 

the cluster. This name was provided to you by the IT when you asked for access. Be aware that 

there might be deviations on how your folder name in the home directory has been created 

(especially if you were granted access to the cluster before 2024). If you have access to the 

cluster, just log in using ssh and type pwd to see your folder name in the home directory. 

Something like the line above will pop up on your command line. 

 

The most secure way to transfer code is using File Transfer Clients like sftp and scp via the 

command line. Please see below for how to use these clients and a demonstration video. 

 

 

File Transfer Clients 
 

http://54.236.43.240/doku.php?id=data-storage


 19 

Primary access to psychp01 is via ssh based tools (on the command line). To upload or 

download data and code, File Transfer Clients such as scp and sftp can be used. 

 

To transfer data to and from psychp01 use the following address: 

 
psychp01.rhul.ac.uk 

 

 

sftp 
 

sftp, which stands for Secure File Transfer Protocol, is an encrypted protocol built into SSH 

that can implement commands for transferring files between two remote systems over a secure 

connection. There are many resources on the web on how to use sftp (e.g., here). Here, 

example applications to transfer data onto psychp01 will be shown. 

 

First, you need to establish a secure connection with the server. This is very similar to how you 

would connect with the server using ssh (see here). 

 
sftp username@psychp01.rhul.ac.uk 

 

Like for the ssh connection, “username” is the username provided to you by the IT when you 

asked for access to the cluster. Hit enter and you will be required to enter your password. Once 

you are connected, at the beginning of your command line, you will see that an connection has 

been established: 

 
sftp> 

 

Now, you can ftp commands to (among others) upload, download, remove, and move files. 

Type help to check all commands available. 

 
sftp> help 

 

The sftp connection puts you on the cluster. Here, you can use all common commands you 

would use on your local machine to get the current directory, change the current directory and 

so on. If you would like to use the same commands on your local computer, you can do that by 

adding an “l” in front of the command you want to use. This “l” stands for “local” and tells 

sftp to use the command on the local machine as opposed to the remote one. 

 

For instance, when you establish an sftp connection, you will find yourself in your home 

directory. Hence, if your home directory path is /home/gbellucci, when you type pwd, you 

will see the second line of the code below appearing: 

 
sftp> pwd 

Remote working directory: /home/gbellucci 

 

On the contrary, if you type lpwd, you will see the second line of the code below appearing: 

 
sftp> lpwd 

Local working directory: /Users/Gab 

 

where /Users/Gab is my (local) current directory on my computer. Type help to see the 

difference in the commands for remote and local implementations. 

https://www.digitalocean.com/community/tutorials/how-to-use-sftp-to-securely-transfer-files-with-a-remote-server


 20 

 

To download data from the cluster onto your local directory, you need to use the get command, 

like this: 

 
sftp> get remote_filename_path local_dirpath 

 

For example, if you have to get a file called results_matrix.mat from the folder results in 

your home directory /home/gbellucci and download it in your folder project_results on 

your local directory /Users/Gab, you will do: 

 
sftp> get /home/gbellucci/results/results_matrix.mat /Users/Gab/project_results 

 

Alternatively, you can cd to results (on the cluster), lcd to project_results (on your local 

machine), and then just type get results_matrix.mat, like this: 

 
sftp> cd /home/gbellucci/results 

sftp> lcd /Users/Gab/project_results 

sftp> get results_matrix.mat 

 

NOTE: If you have folder names that contain spaces, sftp would fail. For instance, something 

like that: sftp> lcd /Users/Gab/project results, (i.e., your results folder named “project 

result” with a space) would not work! 

 

If you have to download a folder, you will need to use the -r argument like that: 

 
sftp> get -r remote_dirpath local_dirpath 

 

On the contrary, if you have to upload data from your local machine to the cluster, you will 

need to use the put command: 

 
sftp> put local_filename_path remote_dirpath 

 

In this video, you will see how to transfer a Python code and a bash file to psychp01 using put. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




 21 

scp 
 

scp (secure copy) is a command-line utility that allows you to securely copy files and 

directories between two locations. scp use requires a password, and both the files and password 

are encrypted so as to securely transfer data from one location to the other. scp uses the ssh 

protocol for both authentication and encryption. See here for my information. 

 

When transferring data, scp takes on two main arguments: 

 
scp source destination 

 

The first argument is the address of the source file to transfer, the second the address where it 

has to be transferred to. A good way to memorize it is to think that scp needs to know what to 

send where to. 

 

For example, to transfer files from the remote cluster (source) to your local machine 

(destination), use: 

 
scp username@address_name:pathname_remote_src pathname_local_dest 

 

Suppose my username (the one given to you by the IT when you got access to the cluster) is 

gbellucci, the filename of the file (e.g., a MATLAB file .m) I need to transfer is 

best_analysis.m, the pathname to that file on my local computer is /Users/Gab, and the 

pathname of the remote folder on the cluster I need to send my file to is 

/home/gbellucci/coolest_project. The line on terminal I need to transfer my file will be 

To transfer files from your local machine to the remote cluster, use: 

 
scp <space> pathname_local_src <space> username@address_name:pathname_remote_dest 

 

Suppose the filename of the file (e.g., a MATLAB file .m) I need to transfer is 

best_analysis.m, the pathname to that file on my local computer is again /Users/Gab, and 

the pathname of the remote folder on the cluster I need to send my file to is 

/home/gbellucci/coolest_project. The command on the command line will be: 

 
scp /Users/Gab/best_analysis.m gbellucci@psychp01.rhul.ac.uk:/home/gbellucci/coolest_project 

 

Remember, your data will not be in your folder in the home directory but in your MRIWork# 

folder in /MRIWork. Hence, to upload a data file (say, data.mat), you’d need to type: 

 
scp /Users/Gab/data.mat gbellucci@psychp01.rhul.ac.uk:/MRIWork/MRIWork25/data_coolest_project 

 

If you have to upload or download multiple files or a file that contains multiple file (e.g., a 

folder), now you’ll have a directory path (and not a file path), and you can use the -r argument 

to reiterate the sending over all files like that: 

 
scp -r dirpath_local_src username@psychp01.rhul.ac.uk:dirpath_remote_dest 

 

For example, if your directory path is to the folder called analyses_folder, you can type the 

following: 

 
scp -r /Users/Gab/analyses_folder gbellucci@psychp01.rhul.ac.uk:/home/gbellucci/coolest_project 

 

https://linuxize.com/post/how-to-use-scp-command-to-securely-transfer-files/


 22 

If you have a whole data folder to transfer, you will upload it into your /MRIWork/MRIWork# 

folder like that: 

 
scp -r /Users/Gab/data gbellucci@psychp01.rhul.ac.uk:/MRIWork/MRIWork25/data_coolest_project 

 

You would swap the two arguments if the folder is on the cluster, and you would need to get it 

onto your local computer: 
 

scp -r username@psychp01.rhul.ac.uk:dirpath_remote_src dirpath_local_dest 

 

For example, if your directory path is to the folder on the cluster called results_folder that 

you need to download into your analyses_folder on your local computer, you can type the 

following: 

 
scp -r gbellucci@psychp01.rhul.ac.uk:/home/gbellucci/results_folder /Users/Gab/analyses_folder 

 

rsync 
 

rsync, which stands for remote sync, is a remote and local file synchronization tool. It uses an 

algorithm to minimize the amount of data copied by only moving the portions of files that have 

changed. Please see here for more information. 

 

 

sshfs 
 

sshfs allows you to mount the file system on your local machine. See here for more details. 

Basic usage for Linux users: 

 
sshfs username@psychp01.rhul.ac.uk:dirpath mountpoint [options] 

 

 

FileZilla 
 

FileZilla is a free and open-source File Transfer Protocol (FTP) client that supports ftp, ftps 

and sftp protocols. It allows the implementation of the above command-line programs through 

a graphical interface. Please have a look at this step-by-step guide on how to use FileZilla. 

 

 

ExpanDrive 
 

An alternative to File Transfer Clients like the one mentioned above is ExpanDrive. 

ExpanDrive is a network filesystem client for MacOS, Microsoft Windows and Linux that 

facilitates mapping of local volume to many different types of cloud storage. It is different from 

the above File Transfer Clients because it is integrated into all applications on the operating 

system and does not require a file to be downloaded onto the local machine. On the contrary, 

remote files can be accessed, managed and changed as if they were stored locally. 

 

The downside is that it is a non-free commercial tool. 

 

 

  

https://www.digitalocean.com/community/tutorials/how-to-use-rsync-to-sync-local-and-remote-directories
https://www.digitalocean.com/community/tutorials/how-to-use-sshfs-to-mount-remote-file-systems-over-ssh
https://filezilla-project.org/
http://54.236.43.240/doku.php?id=data-download
https://www.expandrive.com/


 23 

Bash files and Batch system 
 

 

Dos and don'ts 
 

• Never run calculations on the home disk 

• Always use the SLURM queueing system 

• The login via the GUI is only for editing files, submitting jobs and visual inspections 

• Do not run calculations interactively via the GUI 

• Never use spaces for file names, folder names or job process names. 

 

 

Batch System 
 

The Psychp01 cluster is a resource that is shared between many of users and to ensure fair use 

everyone must do their computations by submitting jobs through a batch system that will 

execute the applications on the available resources. 

 

The batch system on Psychp01 is SLURM (Simple Linux Utility for Resource Management). 

 

 

Creating a job script 
 

To run a job on the batch system you need to create a job script. A job script is a regular shell 

script (bash) with some directives specifying the number of CPUs, memory, etc., that will be 

interpreted by the batch system upon submission. 

 

After you wrote your job script as shown in the examples, you can start it with: 

 
sbatch my_job_script_name.sh 

 

You can find job script examples in job script examples. Below, there is a short video on how 

to run a Python code using a job script. See here for a step-by-step explanation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://slurm.schedmd.com/



 24 

How to pass command-line parameters to the job script 
 

It is sometimes convenient if you do not have to edit the job script every time you want to 

change the input file. Or perhaps you want to submit hundreds of jobs and loop over a range of 

input files. For this it is handy to pass command-line parameters to the job script. For how to 

use different parameters and to find a link to a list of possible parameters, see SLURM 

Parameters. 

 

In SLURM you can do this: 

 
 $ sbatch myscript.sh myinput myoutput  

 

And then you can pick the parameters up inside the job script: 

 
#!/bin/bash 

 

#SBATCH ... 

#SBATCH ... 

... 

 

# argument 1 is myinput 

# argument 2 is myoutput 

mybinary.x < ${1} > ${2} 

 

For recommended sets of parameters see also Advanced SLURM and jobs examples. 

  



 25 

Software on psychp01 
 

Psychp01 is a Linux based platform and has neuroimaging software installed on it. The 

software suite installed on the cluster is continuously evolving according to user needs and 

requirements. If an user needs a particular software for a study, the user is encouraged to get in 

touch with the IT team or Gabriele Bellucci at the earliest convenience. They will run a 

feasibility analysis and install the required software as soon as possible. Following is a list of 

available software on the cluster at the moment: 

 

• MATLAB R2023a (/usr/local/apps/MATLAB)  

• GNU Octave 6.2.0 (/usr/share/octave)  

• Python 2.7 (/usr/bin/python2)  

• Python 3.11 (/usr/bin/python3)  

• SPM12 (/usr/local/apps/SPM)  

• FSl 6.0.7 (/usr/local/apps/fsl_6.0.7)  

• R 4.0.4 (/usr/bin/R) 

 

 

  



 26 

Advanced SLURM 
 

This chapter sources from this SLURM page. 

 

Psychp01 uses the SLURM scheduler for running jobs. The home page for SLURM is 

http://slurm.schedmd.com/, and it is used in many computing systems, such as MASSIVE and 

VLSCI. SLURM is an open-source workload manager designed for Linux clusters of all sizes. 

It provides three key functions. 

1. It allocates exclusive and/or non-exclusive access to resources (computer nodes) to 

users for some duration of time so they can perform work. 

2. It provides a framework for starting, executing, and monitoring work (typically a 

parallel job) on a set of allocated nodes. 

3. It arbitrates contention for resources by managing a queue of pending work. 

The following material will explain how users can use SLURM. At the bottom of the page 

there is a PBS, SGE comparison section. SLURM Glossary It is important to understand that 

some SLURM syntax have meanings which may differ from syntax in other batch or resource 

schedulers. 

 

 

SLURM: Glossary 
 

Below is a summary of some SLURM concepts 

Term Description 

Task 
A task under SLURM is a synonym for a process, and is often the number of 

processes that are required 

Success 
A job completes and terminates well (with exit status 0) (cancelled jobs are not 

considered successful) 

Socket A socket contains one processor 

Resource A mix of CPUs, memory and time 

Processor A processor contains one or more cores 

Partition 
SLURM groups nodes into sets called partitions. Jobs are submitted to a 

partition to run. In other batch systems the term queue is used 

Node A node contains one or more sockets 

Failure Anything that lacks success 

CPU 

The term CPU is used to describe the smallest physical consumable, and for 

multi-core machines this will be the core. For multi-core machines where hyper-

threading is enabled this will be a hardware thread. 

Core A CPU core 

Batch job A chain of commands in a script file 

Account 
The term account is used to describe the entity to which used resources are 

charged to. This field is not used on the Monarch cluster at the moment. 

http://slurm.schedmd.com/


 27 

 

SLURM: Useful Commands 

What 
SLURM 

command 
Comment 

Job Submission sbatch jobScript 
SLURM directives in the jobs script can also be set 

by command line options for sbatch. 

Check queue 
squeue or aliases 

sq SQ 

You can also examine individual jobs, i.e. squeue -j 

792412 

Check cluster 

status 
show_cluster 

This is a nicely printed description of the current 

state of the machines in our cluster, built on top of 

the sinfo command. 

Deleting an 

existing job 
scancel jobID  

Show job 

information 

scontrol show 

job jobID 
Also try show_job for nicely formatted output. 

Suspend a job 
scontrol suspend 

jobID 
 

Resume a job 
scontrol resume 

jobID 
 

Deleting parts of 

a job array 

scancel 

jobID_[5-10] 
 

 
SLURM: More on Shell Commands 
 

Users submit jobs to psychp01 using SLURM commands called from the Unix shell (such as 

bash, or csh). Typically, a user creates a batch submission script that specifies what computing 

resources they want from the cluster, as well as the commands to execute when the job is 

running. They then use sbatch filename to submit the job. Users can kill, pause and interrogate 

the jobs they are running. Here is a list of common commands: 

 

• To submit a job script for execution, use sbatch. The script will typically contain one or 

more srun commands to launch (parallel) tasks. 

 
sbatch [options] job.sh 

 

• To delete a job from the queue or stop it running, use scancel. 

 
scancel jobID1 jobID2 

scancel --name=[job name] 

scancel --user=[user] 

 

• To report the state of partitions and nodes managed by SLURM, use sinfo. It has a 

wide variety of filtering, sorting, and formatting options. 

 



 28 

sinfo [options] 

 

Example: 
gbellucci@psychp01:~$ sinfo 

PARTITION AVAIL  TIMELIMIT  NODES  STATE NODELIST 

test*        up   infinite      1    mix psychp01 

 
• To report the state of jobs or job steps use squeue. It has a wide variety of filtering, 

sorting, and formatting options. By default, it reports the running jobs in priority order 

and then the pending jobs in priority order. 

o For example, to print information only about a specific job step 65552.1: 

 
  squeue --steps 65552.1 

  STEPID     NAME  PARTITION    USER    TIME_USE      NODELIST(REASON) 

  65552.1    test2     test   gabriele       12:49      dev[1-4] 

 

o We also have set up aliases to squeue that prints more information for them. 

Alias Maps to 

sq squeue -u <userid> 

SQ 
squeue -o”%.18i %.8P %.6a %.15j %.8u %8Q %.8T %.10M %.4c %.4C 

%.12l %.12L %.6D %.16S %.16V %R 

 

o SQ prints more information on the jobs, for all users and can be used like: 

 
  SQ -u myUserName 

 

o Some squeue options of interest. See man squeue for more information. 

squeue option Meaning 

–array Job arrays are displayed one element per line 

–jobs=JobList Comma separated list of Job IDs to display 

–long Display output in long format 

–name=NameList Filter results based on job name 

–partition=PartitionList Comma separated list of partitions to display 

–user=User Display results based on the listed user name 

 

• To report or modify details of a currently running job, use scontrol. 

 
 scontrol show job 71701  #report details of job whose jobID is 71701 

 scontrol show jobid -dd 71701 # report more details on this job 

 scontrol hold 71701 #hold a job, prevents it being scheduled for execution 

 sctonrol release 71701   #release a job that was previously held manually 

 

• Use sacct to view details on finished jobs 

 
 sacct -l -j jobID 

 

• The command sstat shows metrics from currently running jobs when given a job 

number. Note, you need to launch jobs with srun to get this information. 



 29 

 

 

Help on shell commands 
 

Users have several ways of getting information on shell commands. 

 

• The commands have man pages (via the Unix manual), e.g., man sbatch 

 

• The commands have built-in help options, e.g., 
 

 sbatch --help 

 sbatch --usage 

 

 

Most commands have options in two formats: 

• single letter, e.g., -N 1 

• verbose, e.g., --nodes=1 

Note the double dash -- in the verbose format. A non-zero exit code indicates failure in a 

command. 

 

Some default behaviours: 

• SLURM processes launched with srun are not run under a shell, so none of the 

following are executed:~/.profile~/.baschrc~/.login 

• SLURM exports user environment by default (or –export=NONE) 

• SLURM runs in the current directory (no need to cd $WORKDIR) 

• SLURM combines stdout and stderr and outputs directly (and naming is different). The 

SLURM stdout /stderr file will be appended, not overwritten (if it exists) 

• SLURM is case insensitive (e.g. project names are lower case) 

 

 

Batch Scripts 
 

A job script has a header section which specifies the resources that are required to run the job 

as well as the commands that must be executed. An example script is shown below. 

 
!/bin/env bash 

 

#SBATCH --job-name=example 

#SBATCH --time=01:00:00 

#SBATCH --ntasks=10 

#SBATCH --cpus-per-task=10 

#SBATCH --mem=2000 

 

module load intel 

uname -a 

srun uname -a 

Here are some of the SLURM directives you can use in a batch script. man sbatch will give 

you more information. 

SLURM directive Description 

–job-name=[job name] The job name for the allocation, defaults to the script name. 



 30 

–partition=[partition name] 
Request an allocation on the specified partition. If not 

specified jobs will be submitted to the default partition. 

–time=[time spec] The total wall time for the job allocation. 

–array=[job spec] Submit a job array with the defined indices. 

–dependency=[dependency 

list] 
Specify a job dependency. 

–nodes=[total nodes] Specify the total number of nodes. 

–ntasks=[total tasks] Specify the total number of tasks. 

–ntasks-per-node=[ntasks] Specify the number of tasks per node. 

–cpus-per-task=[ncpus] Specify the number of CPUs per task. 

–ntasks-per-core=[ntasks] Specify the number of tasks per CPU core. 

–

export=,[variable|ALL|NONE] 

Specify what environment variables to export. NOTE: 

SLURM will copy the entire environment from the shell 

where a job is submitted from. This may break existing 

batch scripts that require a different environment than say a 

login environment. To guard against this –export=NONE 

can be specified for each batch script. 

 

  



 31 

Running jobs: 

Examples 

 

 

If you want to see a general blueprint to write your own bash script, jump here. For specific 

examples, go to R example, Python example, MATLAB example. 

 

Below here, there are a few introductory sections for your general information on SLURM 

workload management system. For more details on SLURM visit the SLURM website or check 

out the Advanced SLURM documentation in this manual. 

 

 

SLURM Workload Manager 

 

SLURM is the workload manager and job scheduler. 

 

There are two ways of starting jobs with SLURM; either interactively with srun or as a script 

with sbatch. 

 

Interactive jobs are a good way to test your setup before you put it into a script or to work with 

interactive applications like MATLAB or Python. You immediately see the results and can 

check if all parts behave as you expected. See Interactive Jobs for more details. 

 

Please note: at our site if you submit SLURM task arrays it is very important to throttle the 

number of tasks/CPUs dispatched or you will take all the available resources. 

 

 

SLURM Parameters 
 

SLURM supports a multitude of different parameters. This enables you to effectively tailor 

your script to your need when using Psychp01 but also means that is easy to get lost and waste 

your time and quota. 

 

Note: everything that is preceded by # followed by a space will be taken as a comment. On the 

contrary, #SBATCH followed by dash or double dash will define the parameters for the job. 

 

The following parameters can be used as command line parameters with sbatch and srun or in 

jobscript, see script examples below. To use it in a jobscript, start a newline with #SBATCH 

followed by the parameter. For example, if you want to give a name to your job script, use the 

argument --job-name=, for example: 

 
#SBATCH --job-name=my_test_job_name 

 

NOTE: Do not use spaces in the job name. Something like that: #SBATCH --job-name=my 

test job name would not work! 

 

See here for list of commands and here for examples on how to use them in batch scripts. 

 

 

https://slurm.schedmd.com/


 32 

Differences between CPUs and tasks 
 

As a new user writing your first SLURM job script the difference between --ntasks and 

--cpus-per-task is typically quite confusing. Assuming you want to run your program 

on a single node with 16 cores which SLURM parameters should you specify? 

 

The answer is it depends whether your application supports MPI. MPI (message passing 

protocol) is a communication interface used for developing parallel computing programs on 

distributed memory systems. This is necessary for applications running on multiple computers 

(nodes) to be able to share (intermediate) results. 

 

To decide which set of parameters you should use, check if your application utilizes MPI and 

therefore would benefit from running on multiple nodes simultaneously. On the other hand, if 

you have an non-MPI enables application or made a mistake in your setup, it doesn’t make 

sense to request more than one node. 

Currently, psychp01 has only a single node, hence when running your analyses, you would 

need to carefully choose only how many CPUs your analysis (task) requires by using --cpus-

per-task. 

 

 

Job Blueprint 

 

You can save the following example to a file (e.g., run.sh) on psychp01. Comment the two cp 

commands that are just for illustration purpose (lines 46 and 55) and change the SBATCH 

directives where applicable. You can then run the script by typing: 

 
sbatch run.sh 

 

Please note that all values that you define with sbatch directives are hard values. When you, 

for example, ask for 6000 MB of memory (--mem=6000MB) and your job uses more than that, 

the job will be automatically killed by the manager. 

 

 
#!/bin/bash -l 

  

############################## 

#       Job blueprint        # 

############################## 

  

# Give your job a name, so you can recognize it in the queue overview 

#SBATCH --job-name=example 

  

# Define, how many nodes you need. For now, psychp01 has only 1 node with a 

100 CPUs. 

#SBATCH --nodes=1 

# By default, SLURM will allocate 1 CPU to your tasks. You can define the 

number of CPUs you would need for your job as follows: 

 

#SBATCH --cpus-per-task=20 

 

# You can further define the number of tasks with --ntasks-per-* 

# See "man sbatch" for details. e.g., --ntasks=4 will ask for 4 cpus. 

# Define, how long the job will run in real time. This is a hard cap 

meaning 



 33 

# that if the job runs longer than what is written here, it will be 

# force-stopped by the server. If you make the expected time too long, it 

will 

# take longer for the job to start. Here, we say the job will take 5 

minutes. 

#              d-hh:mm:ss 

 

#SBATCH --time=0-00:05:00 

  

# Define the partition on which the job shall run. May be omitted. 

#SBATCH --partition=test 

  

# How much memory you need. 

# --mem will define memory per node and 

# --mem-per-cpu will define memory per CPU/core. Choose one of those. 

#SBATCH --mem-per-cpu=1500MB 

##SBATCH --mem=5GB    # this one is not in effect, due to the double hash 

  

# Turn on mail notification. There are many possible self-explaining 

values: 

# NONE, BEGIN, END, FAIL, ALL (including all aforementioned) 

# For more values, check "man sbatch" 

#SBATCH --mail-type=END,FAIL 

  

# You may not place any commands before the last SBATCH directive 

  

# Define and create a unique scratch directory for this job 

SCRATCH_DIRECTORY=/home/${USER}/${SLURM_JOBID} 

mkdir -p ${SCRATCH_DIRECTORY} 

cd ${SCRATCH_DIRECTORY} 

  

# You can copy everything you need to the scratch directory 

# ${SLURM_SUBMIT_DIR} points to the path where this script was submitted 

from 

cp ${SLURM_SUBMIT_DIR}/myfiles*.txt ${SCRATCH_DIRECTORY} 

  

# This is where the actual work is done. In this case, the script only 

waits. 

# The time command is optional, but it may give you a hint on how long the 

# command worked 

time sleep 10 

#sleep 10 

  

# After the job is done we copy our output back to $SLURM_SUBMIT_DIR 

cp ${SCRATCH_DIRECTORY}/my_output ${SLURM_SUBMIT_DIR} 

  

# In addition to the copied files, you will also find a file called 

# slurm-1234.out in the submit directory. This file will contain all output 

that 

# was produced during runtime, i.e. stdout and stderr. 

  

# After everything is saved to the home directory, delete the work 

directory to 

# save space on /home 

cd ${SLURM_SUBMIT_DIR} 

rm -rf ${SCRATCH_DIRECTORY} 

  

# Finish the script 

exit 0 

 

 

Running many sequential jobs in parallel using job arrays 



 34 

 

In this example we wish to run many similar sequential jobs in parallel using job arrays. We 

take Python as an example, but this does not matter for the job arrays: 

 
#!/usr/bin/env python 

 

import time 

 

print('start at ' + time.strftime('%H:%M:%S')) 

 

print('sleep for 10 seconds ...') 

time.sleep(10) 

 

print('stop at ' + time.strftime('%H:%M:%S')) 

 

Save this to a file called “test.py” and try it out: 

$ python test.py 

 

start at 15:23:48 

sleep for 10 seconds ... 

stop at 15:23:58 

Good. Now we would like to run this script 16 times at the same time. For this we use the 

following script: 

#!/bin/bash -l 

 

##################### 

# job-array example # 

##################### 

 

#SBATCH --job-name=example 

 

# 16 jobs will run in this array at the same time 

#SBATCH --array=1-16 

 

# run for five minutes 

#              d-hh:mm:ss 

#SBATCH --time=0-00:05:00 

 

# 500MB memory per core 

# this is a hard limit 

#SBATCH --mem-per-cpu=500MB 

 

# you may not place bash commands before the last SBATCH directive 

 

# define and create a unique scratch directory 

SCRATCH_DIRECTORY=/ptmp/${USER}/job-array-example/${SLURM_JOBID} 

mkdir -p ${SCRATCH_DIRECTORY} 

cd ${SCRATCH_DIRECTORY} 

 

cp ${SLURM_SUBMIT_DIR}/test.py ${SCRATCH_DIRECTORY} 

 

# each job will see a different ${SLURM_ARRAY_TASK_ID} 

echo "now processing task id:: " ${SLURM_ARRAY_TASK_ID} 

python test.py > output_${SLURM_ARRAY_TASK_ID}.txt 

 



 35 

# after the job is done we copy our output back to $SLURM_SUBMIT_DIR 

cp output_${SLURM_ARRAY_TASK_ID}.txt ${SLURM_SUBMIT_DIR} 

 

# we step out of the scratch directory and remove it 

cd ${SLURM_SUBMIT_DIR} 

rm -rf ${SCRATCH_DIRECTORY} 

 

# happy end 

exit 0 

 

Submit the script and after a short while you should see 16 output files in your submit directory. 

 

 

R example  
 

Running R scripts on psychp01 is very easy. Save the following R script in your home directory 

(e.g., /home/gbellucci) as r_script.R: 

 
# Create a 2000x2000 matrix with random values 

A1 <- matrix(runif(2000*2000), nrow = 2000, ncol = 2000) 

  

# Perform 1000 fft operations on it 

start_time <- as.numeric(Sys.time()) 

for (i in 1:1000) { 

    A1 <- fft(A1) 

} 

time1 <- as.numeric(Sys.time()) - start_time 

  

# write result time to file: 

cat(paste('CPU time:', round(time1*1000,2),'ms'),file='results.txt') 

 

Save the following job script in your home directory as run_r_script.sh. 

 
#!/bin/bash -l 

# My job script to run R code 

  

#SBATCH -o ./job_output.%A_%a 

#SBATCH -e ./job_errors.%A_%a 

#SBATCH -D ./ 

#SBATCH -J run_r_test 

#SBATCH --ntasks=1 

#SBATCH --cpus-per-task=10 

#SBATCH --mem=6000 

#SBATCH --time=00:05:00 

  

# Use the command Rscript and set the path to the R script to run it. Change 

/home/gbellucci with the location of your script on psychp01. 

Rscript /home/gbellucci/r_script.R 

 

Now on the command line, change your current directory to the home directory where you 

saved your run_r_script.sh and use the sbatch command to run the R script: 

 
sbatch run_r_script.sh 

 

When the job is finished you can display the output: 

 
vim results.txt 

 



 36 

 

Python example  
 

Below is an example of a Python script to be used on the cluster. Save the following Python 

script in your home directory (e.g., /home/gbellucci) as python_script.py: 

 
import numpy as np 

from time import time 

 

# Create a 2000x2000 matrix with random values 

A1 = np.random.rand(2000, 2000).astype('float32') 

 

# Perform 1000 fft operations on it 

start_time = time() 

for i in range(1000): 

    A1 = np.fft.fft(A1) 

end_time = time() 

time1 = end_time - start_time 

 

# write result time to file: 

with open('results.txt', 'w') as fh: 

    fh.write(f'CPU time: {time1*1000:.2f} ms\n') 

 

 

The job script below will run your Python script. Save it in your home directory as 

run_python_script.sh. 

 
#!/bin/bash -l 

# My job script to run Python code 

  

#SBATCH -o ./job_output.%A_%a 

#SBATCH -e ./job_errors.%A_%a 

#SBATCH -D ./ 

#SBATCH -J run_test 

#SBATCH --ntasks=1 

#SBATCH --cpus-per-task=10 

#SBATCH --mem=6000 

#SBATCH --time=00:05:00 

 

# import below here any python packages that are required for your script 

 

# use the python command and set the path to your script to run it. Change 

/home/gbellucci with the location of your script on psychp01. 

python /home/gbellucci/python_script.py 

 

Now on the command line, change your current directory to the home directory where you 

saved your run_python_script.sh and use the sbatch command to run the Python script: 

 
sbatch run_python_script.sh 

 

When the job is finished you can display the output: 

 
vim results.txt 

 

Below, there is a short video that demonstrates what just described. 

 

 



 37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MATLAB example 
 

Simple example 
 

Running MATLAB scripts on psychp01 is pretty straightforward. Save the following 

MATLAB script in your home directory (e.g., /home/gbellucci) as matlab_script.m: 

 
% Create a 2000x2000 matrix with random values 

A1 = rand(2000,2000,'single'); 

  

% Perform 1000 fft operations on it 

tic; 

for i=1:1000 

    A1 = fft(A1); 

end 

time1 = toc; 

  

% write result time to file: 

fh = fopen('results.txt','w+'); 

fprintf(fh,'CPU time: %.2f ms\n',time1*1000); 

fclose(fh); 

 

Save the following job script in your home directory as run_matlab_script.sh: 

 
#!/bin/bash -l 

# This is a comment for this job script to run the above matlab script 

  

#SBATCH -o ./job_output.%A_%a 

#SBATCH -e ./job_errors.%A_%a 

#SBATCH -D ./ 

#SBATCH -J run_test_for_matlab_script 

# --- resource specification (which resources for how long) --- 

#SBATCH --partition=test 

#SBATCH --ntasks=1 

#SBATCH --cpus-per-task=10 

#SBATCH --mem=6000        # memory in MB required by the job 

#SBATCH --time=00:05:00   # run time in h:m:s, up to 24h possible 

 

# Use the srun command to run the MATLAB script. Change /home/gbellucci with 

the location of your script on psychp01. 




 38 

srun matlab -nodisplay -batch /home/gbellucci/matlab_script.m 

 

Now on the command line, change your current directory to the home directory where you 

saved your run_matlab_script.sh and use the sbatch command to run the MATLAB script: 

 
sbatch run_matlab_script.sh 

 

When the job is finished you can display the output: 

 
vim results.txt 

 

 

Example with Parallel Computing 

For parallel computing, we would need to modify our MATLAB script matlab_script.m to 

run processes in parallel as follows: 

 
% Create a 2000x2000 matrix with random values 

parpool(10); 

A1 = rand(2000,2000,'single'); 

  

% Perform 1000 fft operations on it 

tic; 

parfor i=1:1000 

    A1 = fft(A1); 

end 

time1 = toc; 

  

% write result time to file: 

fh = fopen('results.txt','w+'); 

fprintf(fh,'CPU time: %.2f ms\n',time1*1000); 

fclose(fh); 

 

No further changes are required to your job script run_matlab_script.sh in your home 

directory. You should only be sure that you are not requesting more CPUs in your MATLAB 

script than the ones you are allowing in the job script. That is, in MATLAB, command parpool 

should request either less than or the same number of CPUs as the ones you set in #SBATCH -

-cpus-per-task=10. Otherwise, your job will crash, as MATLAB will not find enough 

available CPUs when running. 

 

Now run your job script as before using the sbatch command: 

 
sbatch run_matlab_script.sh 

 

 

Example with GPU Computing 

For now, GPU computing is not supported on psychp01. However, in general, to run 

MATLAB processes on a GPU partition, we would need to add another block to our MATLAB 

script. Save it as matlab_gpu.m: 

 
% Create a 2000x2000 matrix with random values 

A1 = rand(2000,2000,'single'); 

  

% Perform 1000 fft operations on it 

tic; 

for i=1:1000 



 39 

    A1 = fft(A1); 

end 

time1 = toc; 

  

% copy the matrix onto the GPU 

A2 = gpuArray(A1); 

% perform the same 1000 operations 

tic; 

for i=1:1000 

    A2 = fft(A2); 

end 

time2 = toc; 

  

% write result time to file: 

fh = fopen('results.txt','w+'); 

fprintf(fh,'CPU time: %.2f ms GPU time: %.2f ms Speedup factor: 

%.2f\n',time1*1000,time2*1000,time1/time2); 

fclose(fh); 

 

 

We also have to modify the job script a bit. We will select the GPU partition. Save the new job 

script as run_matlab_gpu_script.sh: 

 
#!/bin/bash -l 

# This is a comment for this job script to run the above matlab script on 

the GPU partition 

  

#SBATCH -o ./job_output.%A_%a 

#SBATCH -e ./job_errors.%A_%a 

#SBATCH -D ./ 

#SBATCH -J mat_gpu 

# --- resource specification (which resources for how long) --- 

#SBATCH --partition=gpu 

#SBATCH --ntasks=1 

#SBATCH --cpus-per-task=10 

#SBATCH --mem=6000        # memory in MB required by the job 

#SBATCH --time=00:05:00   # run time in h:m:s, up to 24h possible 

  

# --- start from a clean state and load necessary environment modules --- 

 

# run MATLAB 

srun matlab -nodisplay -batch /home/gbellucci/matlab_gpu.m 

 

And now run it like before: 
sbatch run_matlab_gpu_script.sh 

 

 

  



 40 

Interactive Jobs 
 

Starting an interactive job 
 

You can run an interactive job like this: 

 
$ srun --nodes=1 --ntasks-per-node=1 --time=01:00:00 --pty bash -i 

 

Here we ask for a single core on one interactive node for one hour with the default amount of 

memory. The command prompt will appear as soon as the job starts. 

This is how it looks once the interactive job starts: 

 
srun: job 12345 queued and waiting for resources 

srun: job 12345 has been allocated resources 

 

Exit the bash shell to end the job. If you exceed the time or memory limits the job will also 

abort. 

 

Interactive jobs have the same policies as normal batch jobs, there are no extra restrictions. 

You should be aware that you might be sharing the node with other users, so play nice.  

 

 

Keeping interactive jobs alive 
 

Interactive jobs die when you disconnect from the login node either by choice or by internet 

connection problems. To keep a job alive, you can use a terminal multiplexer like tmux. 

 

tmux allows you to run processes as usual in your standard bash shell. You start tmux on the 

login node before you get an interactive slurm session with srun and then do all the work in it. 

 

In case of a disconnect you simply reconnect to the login node and attach to the tmux session 

again by typing: 

 
tmux attach 

 

or in case you have multiple session running: 

 
tmux list-session 

tmux attach -t SESSION_NUMBER 

 

As long as the tmux session is not closed or terminated (e.g. by a server restart) your session 

should continue. One problem with tmux is that the tmux session is bound to the particular 

login server you get connected to. So, if you start a tmux session on a particular login node and 

next time you get randomly connected to a different login node, you first have to connect to 

back to the original login node. Given that psychp01 has currently only one node, this is not an 

issue for us now. 

 

To log out a tmux session without closing it you have to press CTRL-B (that is, the Ctrl key 

and simultaneously “b”, which is the standard tmux prefix) and then “d” (without the quotation 

marks). To close a session just close the bash session with either CRTL-D or type exit. 



 41 

You can get a list of all tmux commands by CTRL-B and the ? (question mark). See also this 

page for a short tutorial of tmux. Otherwise working inside of a tmux session is almost the 

same as a normal bash session. 

 

 

  

https://www.hamvocke.com/blog/a-quick-and-easy-guide-to-tmux/
https://www.hamvocke.com/blog/a-quick-and-easy-guide-to-tmux/


 42 

Installing VPN Client – GlobalProtect 
 

Staff should go to the page https://intranet.royalholloway.ac.uk/staff/public/it-

services/vpn/vpn-guide.aspx and download the VPN program. 

 
 

Login with your username and password 

 
 

 

Download and install the GlobalProtect  

https://intranet.royalholloway.ac.uk/staff/public/it-services/vpn/vpn-guide.aspx
https://intranet.royalholloway.ac.uk/staff/public/it-services/vpn/vpn-guide.aspx


 43 

 
 

Most of you should have a 64 BIT version of Windows. To find out the version please follow 

the next two screenshots.  If you have a Mac then download the Mac version.   

 
 

 
 

Right click 

This PC and 

go to 

Properties 



 44 

 

 
 

 

 
 



 45 

 
 

 

Once installed, find the GlobalProtect VPN program from the Start menu  

 
 

Enter the server information staff-vpn.royalholloway.ac.uk and log in with your username 

and password. 

 
 

  



 46 

Frequently Asked Questions 
 

 

What are you looking for? 

 

1. How do I access the cluster? 

2. How do I transfer data and code to the cluster? 

3. How do I run analyses on the cluster? 

4. Which software is installed on the cluster? 

5. How does SLURM work? 

 

 


	Psychp01 Manual
	Gabriele Bellucci
	v. 1
	2024
	Choose what you want to do
	by clicking the corresponding text in the speech balloons above
	Table of Contents
	Prerequisites
	Psychp01 is a High Performance Computing (HPC) cluster as a vitualized system that runs Debian 11 (https://www.debian.org/), a Linux operating system. You will need to become familiar with the Linux command line interface to use them effectively. Whil...
	This YouTube.com video starts from the very basics of the Linux command line. And Fig.1 shows a nice cheat sheet for Linux.
	Also, please find here some useful tutorials on HPC clusters. Moreover, the department of Psychology has a github page with tutorials and resources to help you get started, guide you through some practicalities, and provide you with useful code snippets.
	Moreover, for any technical assistance, please send a ticket to the IT help desk at itservicedesk@rhul.ac.uk, or email Gabriele Bellucci at gabriele.bellucci@rhul.ac.uk.
	Getting Started with HPC on psychp01

	Objective: Here you will get to know psychp01 and will learn how to connect to psychp01.
	What's psychp01?
	Psychp01 is a virtual computer cluster in a cloud environment at Royal Holloway. Psychp01 provides local HPC resource with an end user experience similar to most HPC Linux clusters.
	Current available resources are 128 cores and 256 GB memory. The server mounts NFS filesystems from a NetApp File Server (see Fig. 2).
	Psychp01 utilizes Linux (Debian), a batch scheduler (SLURM), and various software packages deployed using a module system.
	There will be an option for Singularity modules which enable applications and user to bring their own software environment and preserve that environment in the name of reproducible research .
	First Steps on psychp01

	Overview
	It is strongly advised that new HPC users explore the many tutorials and documentation resources available on the web, for example: HPC Cluster Tutorials or our RHULPsychology github page Please see Prerequisites.
	Before starting, you need to have a short introduction to the usage of the cluster and current guidelines in place at the department. For that, please contact Gabriele Bellucci at gabriele.bellucci@rhul.ac.uk.
	On psychp01, there are four main locations you'd need to get familiar with:
	• /home
	• /MRIWork
	• /MRIArchive
	• /MRIRaw
	We will explain to you step by step how to move to these locations and what they are there for. Importantly, data in the /MRI* locations will be backed up to avoid data loss.
	See also this CUBIC wiki page for further details on data structure, storage, backup and data sharing.
	Account and Password
	Access to psychp01 can be made available to all staff members with a @rhul.ac.uk email address. To request for an account for HPC access, please send an email to  itservicedesk@rhul.ac.uk. It is expected to take 2-3 days for creating your account and ...
	When you get confirmation, you will be able to connect to the cluster.
	Access to psychp01
	Access to psychp01 can be performed through the command line (for computing purposes) as well as the Graphical User Interface (GUI; for visualization purposes only). Here, the ways of access to the cluster are described.
	Psychp01 Environment
	Once you have logged into psychp01, you are in a basic Linux Debian command line environment. You will need to be familiar with the basics of the Linux command line interface to use psychp01. Luckily, there are many good tutorials on the web to help w...
	On psychp01 you can setup compute jobs and submit them for processing. You can have an interactive environment enabling you to edit files, write scripts, load software modules and compile programs. You can download resources from the internet such as ...
	Psychp01 is a batch computing system which means you must submit your computational work to a job scheduler, in our case SLURM. To submit a job to the scheduler you will need to create a job script. Creating job script is so key to batch HPC cluster c...
	Files and Data Access
	When you ssh login to psychp01, you’ll be in your cluster home directory
	/home/username
	There will be a quota on this directory of 1.5TB. This is different from your campus home directory or network file share. This is a place where you can setup your programs and scripting for jobs that will be submitted to run on the compute resources.
	Given the small space of your home directory, no data should be uploaded to it. Instead, you should place all your data into /MRIWork, which is your workspace. A specific workplace folder will be created and provided by the psychology IT team, which i...
	Data Staging
	To move files from your computer to psychp01 or vice versa, you may use any tool that works with ssh.
	On Linux and OSX, these are scp, sftp, rsync, or similar programs. Please see Transferring files to/from psychp01.
	On Windows, you may use VNC.
	Linux QuickStart
	New on Linux systems?


	This page contains some tips on how to get started using the psychp01 cluster if you are not too familiar with Linux/Unix. The information is intended for both users that are new to psychp01 and for users that are new to Linux/UNIX-like operating syst...
	Please also visit this MIT course on basics shell commands and command line environment.
	SSH
	On a terminal, you can use ssh to login to psychp01. Check the Access to psychp01 through Command Line in this documentation to learn more about ssh.
	File Transfer Clients
	To transfer any file or data you wish to use to the cluster, you can use file transfer clients, such as scp or sftp. For more info, see Transferring files to/from psychp01.
	Running jobs on the cluster
	You must execute your jobs by submitting them to the batch system using bash files. There is a dedicated section on bash files and batch system in our user guide that explain how to use the batch system. The pages explain how to write job scripts, and...
	Common Commands

	Provide the full path name of the directory you are currently in:
	pwd
	Change the current working directory:
	cd
	List the files and directories which are located in the directory you are currently in:
	ls
	Searches through one or more directory trees of a file system, locates files based on some user-specified criteria and applies a user-specified action on each matched file:
	find
	Find specific files, you can use the -name and -type arguments:
	find . -name 'my*' -type f
	The above command searches in the current directory (.) and below it, for files and directories with names starting with my. “-type f” limits the results of the above search to only regular files, therefore excluding directories, special files, pipes,...
	Find a certain expression in one or more files:
	grep
	For example, to find the string apple in the fruitlist.txt text file, type:
	grep apple fruitlist.txt
	Create new directory:
	mkdir
	Remove a file. Use with caution:
	rm
	Remove a directory. Use with caution:
	rmdir
	Move or rename a file or directory:
	mv
	Edit text files in command line (for more details, see here):
	vi
	or
	vim
	View (but do not change) the contents of a text file one screen at a time, or, when combined with other commands (see here) view the result of the command one screen at a time. Useful if a command prints several screens of information on your screen s...
	less
	and
	more
	Use the “pipe” or “vertical bar” to group two or more commands together:
	|
	For example, list files in the current directory (ls), retain only the lines of ls output containing the string ``key” (grep), and view the result in a scrolling page (less), type:
	ls -l | grep key | less
	A complete listing of the defined variables and their meanings can be obtained by typing:
	printenv
	You can define (and redefine) your own variables by typing:
	export VARIABLE=VALUE
	If you know the UNIX-command that you would like to use but not the exact syntax, consult the manual pages on the system to get a brief overview. Use man command for this. For example, to get the right options to display the contents of a directory, use:
	man ls
	To choose the desired options for showing the current status of processes, use
	man ps
	Text editing in command line

	A popular tool for editing files (e.g., your code) on Linux/UNIX-based systems is vi. Unfortunately, the commands within both vi editor are quite cryptic for beginners. It is probably wise to spend some time understanding the basic editing commands be...
	For quick help, use:
	man vi
	or
	man vim
	Suppose you want to check the progress of your analyses. Suppose that you defined in your bash file that SLURM is supposed to output the status of your analyses in a text file (see here) named job_out.txt stored in your analyses folder in your home di...
	ssh gbellucci@psychp01.rhul.ac.uk
	gbellucci@psychp01.rhul.ac.uk's password:
	gbellucci@psychp01:~$ cd /home/gbellucci/analyses
	gbellucci@psychp01:~$ vim job_out.txt
	This would open the file in your command window. You can scroll and check the status of your analyses. To exit just type:
	:q
	Every file opened with vim will be in a non-writable state. To write in your opened file, press
	i
	On the bottom left of your command line, you will see the word INSERT appear, like that:
	--INSERT--
	Modify your file as you wish. When done, press ESC on your keyboard. This will make the word INSERT disappear. You are again back to a non-writable state. To save and exit, type:
	:wq
	Where w stands for “write” and q for “quit”. If you change your mind and decide to exit without saving your changes, just type
	:q!
	This will not write your changes and force an exit (that why the !) from vim.
	Please see below a short video demonstrating that.
	Cluster access

	After you have registered up for HPC access, you will be provided with a local USERID and PASSWORD, different from your college login credentials, which you can use to log into psychp01 using ssh (secure shell).
	To access the cluster, you need to be in the campus network.
	If you are connecting form a Windows computer on campus, you are already in the campus network.
	If you are on campus and connecting from a Linux or Apple computer or if you are off campus, you will need VPN access to the campus network and then connect to psychp01.
	If you don't have VPN access, please submit a ticket to the IT help desk.
	VPN connection

	For Windows, you will need to have installed an SSH client.
	Finally, there is also a GUI option, which, however, is not for computing purposes.
	See here for a step-by-step guide to install the VPN client GlobalProtect.
	Log in with SSH

	Access to psychp01 through Command Line (Linux and OSX)
	An ssh client (Secure SHell) allows you to connect to psychp01 from your terminal. An ssh client provides secure encrypted communications between two hosts over an insecure network.
	If you already have ssh installed on your UNIX-like system (Linux or Apple OSX), have a user account and password, login may be as easy as opening a terminal and typing ssh cluster_name, for instance:
	ssh psychp01.rhul.ac.uk
	into a terminal window.
	If your username on the cluster differs from your username on the local machine, use the -l option to specify the username on the machine to which you connect. For example:
	ssh cluster_name -l your_cluster_username
	or alternatively,
	ssh your_cluster_username@psychp01.rhul.ac.uk
	Hence, if my cluster username is “gbellucci”, I would type the following to access the cluster:
	ssh gbellucci@psychp01.rhul.ac.uk
	If you need X-forwarding, you must log in like this:
	ssh -X cluster_name
	For Interactive sessions, for example MATLAB, you should add -Y to your ssh command:
	ssh -Y username@psychp01.rhul.ac.uk
	where the command -Y enables trusted X11 forwarding.
	Once you have hit entered, you will be asked to provide your password. Once you entered your password, you will be connected to the cluster. You will see some basics information about the cluster printed out in the terminal like:
	Linux psychp01 5.10.0-24-amd64 #1 SMP Debian 5.10.179-5 (2023-08-08) x86_64
	The programs included with the Debian GNU/Linux system are free software;
	the exact distribution terms for each program are described in the
	individual files in /usr/share/doc/ */copyright.
	Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
	permitted by applicable law.
	Last login: Fri Oct 6 19:08:37 2023 from 10.40.65.14
	At the beginning of your terminal line, you will see your username and the server name like that:
	username@psychp01:~\$
	When you are done, you can close the connection just by typing exit in the command line. Please see below a short video that demonstrates that.
	SSH clients for Windows
	On Windows, you can use PuTTYgen that comes with PuTTY. More information on ssh.com. Further, the cmder console emulator works nicely with Windows 10/11 and is available open source here. Please download the full version to get built-in installation o...
	At the OpenSSH page, you will find several SSH alternatives for both Windows and Mac.
	Please note that Mac OS X comes with its own implementation of OpenSSH, so you don’t need to install any third-party software to take advantage of the extra security SSH offers. Just open a terminal window and jump in.
	GUI access

	Alternatively, for allowing GUI access, the cluster comes installed with Remote Desktop Protocol (RDP). From a Windows and Apple computer, use the Microsoft Remote Desktop App. From Linux computers use Remmina. You should use the server location as ps...
	IMPORTANT: Be aware that the GUI access is a useful option you can use in case you would need to visually inspect something on cluster without the need to download it onto your local machine (e.g., plots of your results or preprocessing steps and so o...
	Running analyses on psychp01
	Transferring files to/from psychp01
	Transferring data
	Transferring code
	File Transfer Clients

	Bash files and Batch system
	Dos and don'ts
	Batch System
	Creating a job script
	How to pass command-line parameters to the job script

	Software on psychp01
	Advanced SLURM

	SLURM: Glossary
	SLURM: Useful Commands
	SLURM: More on Shell Commands
	Help on shell commands
	Batch Scripts
	Job Blueprint
	R example
	Python example
	MATLAB example
	Interactive Jobs
	Starting an interactive job
	Keeping interactive jobs alive

	Installing VPN Client – GlobalProtect
	Frequently Asked Questions

	What are you looking for?
	1. How do I access the cluster?
	2. How do I transfer data and code to the cluster?
	3. How do I run analyses on the cluster?
	4. Which software is installed on the cluster?
	5. How does SLURM work?



